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Hexamethylbenzene (1) has been oxidized by a variety
of methods. Peracid methods have been used most
frequently. Oxidation of 1 by perbenzoic acid leads to
the ring-opened products, biacetyl and sym-dimethyl-
diacetyl ethylene.2 When trifluoroperacetic acid is the
oxidant, only acetic acid is formed.3 However when
trifluoroperacetic acid is used with boron trifluoride, then
the product is hexamethyl-2,4-cyclohexadienone.4 Oxida-
tion of some naturally occurring aromatic terpenoids as
well as some nonnatural aromatic compounds, some of
which were polymethylated, by m-chloroperbenzoic acid
gave quinones or hydroxylated products.5 Oxidation of
1 with the HOF‚CH3CN system gives two keto epoxides
which are presumed to arise from an intermediate
cyclohexadienone.6 Photooxidation of 1 gives a mixture
of permethylated benzyl ethers and tetramethylphtha-
lide.7 When the Cu(II)-peroxydisulfate system is used
to oxidize 1 the product is pentamethylbenzyl alcohol.8
Supported on silica gel or Florisil, 1 was oxidized with
O(3P) atoms to yield hexamethyl-2,4-cyclohexadienone
and the derived keto diepoxide.9 In related work meth-
oxybenzenes have been oxidized by the methyltrioxorhe-
nium-hydrogen peroxide system to afford the derived
p-benzoquinones.10 Similarly, methoxybenzenes have
been oxidized by dimethyldioxirane and strong acid to
give p-benzoquinones.11 Some polymethylated arenes
have been oxidized to the p-quinones with the hexafluo-
roacetone hydrate-hydrogen peroxide system.12
In the current work we have oxidized13 1 with di-

methyldioxirane (2) which produced the interesting
triepoxide 2,3:4,5:6,7-triepoxy-2,3,4,5,6,7-hexamethylox-
epane (3) (51% yield) as the major product and a number
of other reaction products15 including 2,3:6,7-diepoxy-
2,3,4,5,6,7-hexamethyloxepin (4).16 The reaction is be-
lieved to proceed through oxide 5 (Scheme 1). In contrast
to other oxidations of 1, in this case oxide 5 is readily
converted to its valence tautomer, 2,3,4,5,6,7-hexamethyl-
oxepin (6). In a minor reaction pathway oxide 5 also
undergoes a previously observed6 methyl shift to give
cyclohexadienone 7 which is easily oxidized by 2 to the
known6,9 trans-diepoxy compound 8 (Scheme 2).

Methyl groups are known to stabilize oxepins.17-21

Oxepins are nonaromatic and have boat conformations.
Access to oxepin 6 permits dioxirane 2 to engage in its
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Scheme 1. Oxidation of Hexamethylbenzene with
Dimethyldioxirane

Scheme 2. Competing Pathway in the Oxidation
of Hexamethylbenzene by Dimethyldioxirane
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well known propensity to epoxidize alkenes.22 Since 2 is
used in neutral solution and under very mild conditions,
its use minimizes the cation chemistry (e.g., 5 f 7)
associated with some of the other oxidants used to oxidize
1. Under these latter conditions methyl migration
dominates the chemistry and forecloses routes to the
oxepin and the type of interesting products observed here.
When the reaction of 1 with 2 is performed with a
reduced amount of 2, then the diepoxide 4 is the major
product, indicating that 4 is the precursor to 3.
X-ray crystallographic analysis23 of diepoxide 424 (Fig-

ure 1) shows that the 2,3 and 6,7 epoxy groups are cis to
each other. A similar structure determination for 324
(Figure 2) indicates that the 4,5 epoxy group is trans to
those at the 2,3 and 6,7 positions. The figures clearly
show the boat conformation in both structures. The
placement of the 4,5 epoxy group trans to the other two
epoxy groups in 3 is presumably due to the more hindered
approach to the cis isomer suggested by Figure 1.
Dimethyldioxirane has been used to synthesize other

polyoxides in ring structures. A particularly interesting
example is the conversion of exo,exo,exo-3,6,9-tri[[(4-
methylphenylsulfonyl)oxy]methyl]-cis,cis-cyclonona-1,4,7-
triene to its all exo trioxide.25 We believe, however, that
the oxidation of 1 to the polyoxides 3 and 4 is the first

example to show that dimethyldioxirane can oxidize an
aromatic compound to such products via an oxepin.
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Figure 1. ORTEP drawing of diepoxide 4.

Figure 2. ORTEP drawing of triepoxide 3.
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